COMMON QUARTERLY EXAMINATION - SEPTEMBER 2019

	Standard	- 11 Re	g No
	PART - III - MAT	THEMATICS	
Time A	Allowed: 2.30 Hours		Maximum Marks: 90
Instru	ctions: 1. Check the question paper for lack of fairness, inform the 2. Use Blue or Black ink to wr	e Hall Superviso	or immediately.
	diagrams.	www.ka	lviexpress.in
Note:	i) Answer all the questions. ii) Choose the most appropriate and and write the option code and	I ^, swer from the g	20×1=20 iven four alternatives
1)	The range of the function $\frac{1}{1-2\sin x}$ is	5	
	a) $(-\infty, -1) \cup \left(\frac{1}{3}, \infty\right)$	b) $\left(-1,\frac{1}{3}\right)$	
	c) $\left[-1,\frac{1}{3}\right]$	d) $(-\infty, -1] \cup \begin{bmatrix} \frac{1}{2} \end{bmatrix}$	$\left(\frac{1}{3}, \infty\right)$
2)	The function $f: [0, 2\pi] \rightarrow [-1, 1]$ definal one-to-one b) onto c) big	ned by $f(x) = \sin x$	ix is I) cannot be defined
3)	The solution set of the following inequ		
			d) $(-\infty, 2)$
4)	If 3 is the logarithm of 343, then the back a) 5 b) 7	c) 6	d) 9
5)	In a $\triangle ABC$, $tan\left(\frac{A}{2}\right) =$.kalviex	press.in
	a) $\sqrt{\frac{(s-b)(s-c)}{bc}}$	b) $\sqrt{\frac{s(s-a)}{bc}}$	
	c) $\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$	d) $\sqrt{s(s-a)(s-a)}$	b)(s - c)
6)	There are 10 points in a plane and 4 straight lines joining any two points is a) 45 b) 40		d) 38
7)	a) 45 b) 40 The n th term of the sequence 1, 2, 4, 7		

a) n^3+3n^2+2n (b) n^3-3n^2+3n (c) $\frac{n(n+1)(n+2)}{3}$ d) $\frac{n^2 - n + 2}{2}$

8). The slopes of the line which makes an angle 45° with the line 3x-y=-5 are

a) 1, -1

b) $\frac{1}{2}$, -2

c) $1, \frac{1}{2}$

d) 2, $\frac{-1}{2}$

9)	If the pair of straight lines $6x^2+41xy-7y^2=0$ makes angle α and β with x-axis, then $\tan\alpha$ $\tan\beta=$						
	a) $\frac{-6}{7}$	b) $\frac{6}{7}$	c) $\frac{-7}{6}$	d) $\frac{7}{6}$			
	a) 2 ³⁵	b) 2 ⁴⁹	ber of subsets of A>	(B is d) 2 ⁷⁰			
	The relation "less to a) only symmetric c) only reflexive		b) only transitive d) equivalence				
12)	If $\left(\frac{2}{3}\right)^{x+2} = \left(\frac{3}{2}\right)^{2-2x}$ then $x = www.kalviexpress.iii$						
	a) 1	b) 3	c) 4	d) 0			
	$2(3^{n+1}) + 7(3^{n-1})$						
13)	The value of $\frac{2(3^{n+1})}{3^{n+2}}$	$-2\left(\frac{1}{3}\right)^{1-n}$ is					
	a) 1	b) 3	c) -1	d) 0			
14)	If $\frac{\cos 3\theta}{2\cos 2\theta - 1} = \frac{1}{2}$,	then the value of $\boldsymbol{\theta}$	is				
	a) $\theta = n\pi + \frac{\pi}{3}$	b) $\theta = 2n\pi \pm \frac{\pi}{3}$	c) $\theta = 2n\pi \pm \frac{\pi}{6}$	d) $\theta = n\pi \pm \frac{\pi}{6}$			
15)	If $1+\cos(x-y)=0$		1)				
	a) $cosx-cosy = 0$ c) $cosx+siny = 1$	Contract to the second	b) $cosx+cosy = 0$ d) $sinx+cosy = 1$				
16)	The number of diagonals of octogen will be						
17)	a) 28 b) 20 c) 10 d) 16 The number of words which can be formed from the letters of the word "MAXIMUM", if two consonents cannot occur together is						
18)	a) 4! If the 19 th term of	b) 3!×4!	c) 7! 49 th term : 29 th terr	d) 5!			
10)	a) 3:1	b) 4:1	c) 2:1	d) 1:3			
19)			+5 = 0 and $6x-8y+$	5 = 0 is			
	a) 2	b) $\frac{1}{2}$	c) $\frac{3}{2}$	d) $\frac{5}{2}$			
20)			$25 x^2 - xy - 6y^2 - 7x + 31$				
,	a) 45°	b) 60°	c) 90°	d) 30°			
PART - II							
wer	wer any seven questions. Www.kalviexpress.in ×2=14						

- 21) If $\wp(A)$ denotes the power set of A, then find $n(\wp(\wp(\wp(\wp(\phi))))$.
- 22) If a and b are the roots of the equation $x^2-px+q=0$, find the value of $\frac{1}{a}+\frac{1}{b}$.

23) Evaluate
$$\left((256)^{-12} \right)^{-1} ^{4}$$
.

- 24) A foot ball player can kick a football from ground level with an initial velocity of 80 ft/second. Find the maximum horizontal distance the football travels and at what angle? (Take q = 32)
- 25) Find the general solution of $\sin \theta = \frac{-1}{\sqrt{2}}$.
- 26) In how many ways 5 different balls be distributed among 3 boxes?
- 27) If $15C_{2r-1} = 15C_{2r+4}$, find r.
- 28) Find the sum of the first n terms of the series

$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots$$
 www.kalviexpress.in

- 29) The length of the perpendicular drawn from the origin to a line is 12 and makes an angle 150° with positive direction of the x-axis. Find the equation of the line.
- 30) If $f(x) = y = \frac{ax b}{cx a}$, then prove that f(y) = x.

PART - III

Answer any seven questions. Question No. 40 is compulsory:

- $7 \times 3 = 21$
- 31) Discuss the following relations for reflexivity, symmetricity and transitivity: Let P denote the set of all straight lines in a plane. The relation R defined by " ℓ Rm if ℓ is perpendicular to m".
- 32) Find the domain of the function $f(x) = \frac{1}{1 2\cos x}$

- 36) Find the sum of $1 + \frac{4}{5} + \frac{7}{25} + \frac{10}{125} + \frac{10}{125}$ 37) If a, b, c are in geometric progression, and if $a^{\frac{1}{x}} = b^{\frac{1}{y}} = c^{\frac{1}{z}}$ then prove that x, y, z are in arithmetic progression.
- 38) Express the equation $\sqrt{3}x y + 4 = 0$ in the following equivalent form (i) Slope and Intercept form (ii) Intercept form.
- 39) The slope of one of the straight lines $ax^2+2hxy+by^2=0$ is twice that of the other, show that $8h^2 = 9ab$.
- 40) Find the value of $\frac{1}{\log_{x}(yz)+1} + \frac{1}{\log_{y}(zx)+1} + \frac{1}{\log_{z}(xy)+1}$

Answer all the questions:

7×5=35

Tim

Ins

Not

41) a) If $f:R \to R$ is defined by f(x) = 2x-3 prove that f is a bijection and find its inverse. (OR)

b) Resolve into partial fraction $\frac{x^2 + x + 1}{x^2 - 5x + 6}$. www.kalviexpress.in

42) a) From the curve $y = x^3$, draw the following in the same plane (i) $y = -x^3$ (ii) $y = x^3 + 1$ (iii) $y = x^3 - 1$ (iv) $y = (x+1)^3$ with the same scale.

b) If $\cot\theta(1+\sin\theta) = 4m$ and $\cot\theta(1-\sin\theta) = 4n$, then prove that $(m^2-n^2)^2 = mn$.

43) a) Find all values of x that satisfies the inequality $\frac{2x-3}{(x-2)(x-4)} < 0$.

b) By the principle of mathematical induction, prove that, for all integers. $n \ge 1, \ 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}.$

- 44) a) If A+B+C = π , prove that cosA+cosB+cosC = 1 + 4 sin $\left(\frac{A}{2}\right)$ sin $\left(\frac{B}{2}\right)$ sin $\left(\frac{C}{2}\right)$.
 - b) A committee of 7 peoples has to be formed from 8 men and 4 women. In how many ways can this be done when the committee consists of (i) exactly 3 women? (ii) at least 3 women? (iii) at most 3 women?
- 45) a) Prove that $\sqrt[3]{x^3 + 7} \sqrt[3]{x^3 + 4}$ is approximately equal to $\frac{1}{x^2}$ when x is large.
 - (OR)
 b) A 150m long train is moving with constant velocity of 12.5 m/s. Find
 i) the equation of the motion of the train.
 - ii) time take to cross a pole.
 - iii) the time taken to cross the bridge of length 850m is?
- 46) a) If n is a positive integer, show that 9ⁿ⁺¹-8n-9 is always divisible by 64 using binomial theorem. **(OR)**
 - b) If the equation $\lambda x^2 10xy + 12y^2 + 5x 16y 3 = 0$ represents a pair of straight lines, find (i) the value of λ and the separate equations of the lines (ii) angle between the lines.
- 47) a) Solve: $secx-tanx = \sqrt{3} (cosx \neq 0)$.

b) How many numbers greater than ten lakh can be formed with digits 2, 3, 0, 3, 4, 2, 3.

www.kalviexpress.in